Abstract

AbstractThe onset of spike stall induced by the interaction of hub corner separation flow with the tip leakage flow is investigated in detail by numerical method in this paper. The time resolved results indicate that the remarkable radial secondary flow from hub to tip near the trailing edge is formed when the compressor approaching rotating stall. The radial secondary flow is unstable and cross-passages propagates, which flows in and away out of the tip region periodically. The disturbance caused by radial secondary flow will influence the tip leakage flow directly by reforming the vortexes in blade tip region. A secondary vortex which comes from the radial migration of corner separation and is induced by the tip leakage vortex appears in the tip region. The simulation result demonstrates that the generation of the secondary vortex is an important symbol of blockage growth in the tip region at the stall inception phase. The disturbance produced by secondary vortex is an incentive of the leading edge overflow and the intensity of secondary vortex could be used as a criterion of rotating stall before leading edge spillage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.