Abstract

A model describes the relationship between mammal body mass and survivorship by combining replicative senescence theory postulating a cellular basis of aging, metabolic theory relating metabolism to body mass, and vitality theory relating survival to vitality loss and extrinsic mortality. In the combined framework, intrinsic mortality results from replicative senescence of the hematopoietic stem cells and extrinsic mortality results from environmental challenges. Because the model expresses the intrinsic and extrinsic rates with different powers of body mass, across the spectrum of mammals, survivorship changes from Type I to Type II curve shapes with decreasing body mass. Fitting the model to body mass and maximum lifespan data of 494 nonvolant mammals yields allometric relationships of body mass to the vitality parameters, from which full survivorship profiles were generated from body mass alone. Because maximum lifespan data is predominantly derived from captive populations, the generated survivorship curves were dominated by intrinsic mortality. Comparison of the mass-derived and observed survivorship curves provides insights into how specific populations deviate from the aggregate of populations observed under captivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call