Abstract

Much work indicates that parietal cortex mediates the transformation of visual information into the motor commands necessary for successful performance of many unimanual tasks. Accumulating evidence suggests that parietal cortex also mediates the coordination of bimanual movements, during which the natural tendency is to couple the limbs temporally. However, the extent to which parietal oculomotor and/or visual processes contribute to temporal coupling of the limbs during bimanual task performance is unknown. In the current study, we monitored the eye movements of a patient with a left parietal infarction as she performed a series of bimanual visuomotor tasks. We demonstrate the impact of an ipsilesional (leftward) orientation bias on her ability to synchronize the onset of bimanual limb movements; the movements were performed in serial fashion, i.e., left limb before right, when the patient was permitted to freely shift saccades and the visual target cuing the left (ipsilesional) limb movement was presented at greater (leftward) eccentricities. Disruption of interlimb synchrony as such was not, however, evident when the patient was required to fixate or when visual targets were presented at lesser ipsilesional eccentricities. Additionally, despite the disruptive influence of oculomotor and visual factors on interlimb synchrony, the patient appeared capable of using visual feedback to straighten the right (contralesional) limb trajectory, thus improving the spatial component of task performance. Results suggest that parietal cortex plays an important role in the coordination of limb movements during performance of bimanual visuomotor tasks. This role appears to involve orienting gaze or attention to the goals of each limb so that the nervous system can synchronize the activity of both limbs and thereby ensure successful task completion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.