Abstract

AbstractInfectious diseases can impact human welfare and impede wildlife management. Much recent research explores whether biodiversity increases or decreases infectious disease risk. Here, we theoretically study the relationship between vector species richness and the risk of vector-borne diseases using an epidemiological model of a single host and multiple vectors. The model considers that vectors are involved in interspecific feeding interference that causes transmission interference and in interspecific recruitment competition that mediates susceptible vector regulation. The model reveals three possible shapes of the vector richness-disease risk relationship: monotonic amplification, hump-shaped, and monotonic dilution patterns. The monotonic amplification pattern occurs across a wide parameter region. The hump-shaped and monotonic dilution patterns are found when transmission interference is strong and recruitment competition is weak. Unexpectedly, susceptible vector regulation not only promotes dilution but can strengthen amplification if coupled with strong transmission interference. Our results suggest that vector richness might be more likely to cause amplification rather than dilution, and shifts in the community mean trait values of vectors could also affect disease risk along the vector richness gradient.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call