Abstract

BackgroundBenzene, toluene, ethylbenzene, and xylene (BTEX) are emitted in the combustion or volatilization of hazardous wastes and fossil fuels. Paint, varnishing agents, and cigarette smoke are also sources of BTEX in living environments. Few studies have examined indoor exposure to BTEX using biomarkers, especially in residential settings. In this study, we evaluated the relationship between residence factors and BTEX exposure using biomarkers among Korean homemakers.MethodWe obtained data on 893 non-smoking homemakers older than 19 years from the Korean National Environmental Health Survey (2009–2011). The concentrations of urinary BTEX metabolites (t,t-muconic acid, hippuric acid, mandelic acid, phenylglyoxylic acid, and total methylhippuric acid) were adjusted using the urinary creatinine. Analysis of covariance (ANCOVA) and logistic regression analysis were used to evaluate the associations between residence parameters and urinary BTEX metabolites.ResultsThe geometric mean concentrations of t,t-muconic acid and methylhippuric acid were significantly higher in the group that had remodeled within the previous 6 months (p < 0.05) compared with the no-remodeling group. In logistic regression analyses, the odds ratio for exceeding the median urinary concentration of t,t-muconic acid was significantly higher in the group that had remodeled compared with the no-remodeling group (OR = 1.591, 95% CI = 1.063–2.382). Urinary methylhippuric acid was significantly associated with residing in a home located within 100 m of a major road (OR = 1.399, 95% CI = 1.071–1.826).ConclusionOur study found some significant associations between urinary BTEX metabolites and residence parameters. To find clear associations, additional and more detailed studies are needed.Trial registrationNot applicable (this study does not include healthcare intervention on human participants).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call