Abstract

The attenuation coefficient of the water body is not directly retrievable from measurements of unpolarized water-leaving radiance. Based on extensive radiative transfer simulations using the vector radiative transfer code RayXP, it is demonstrated that the underwater degree of linear polarization (DoLP) is closely related to the attenuation-to-absorption ratio (c/a) of the water body, a finding that enables retrieval of the attenuation coefficient from measurements of the Stokes components of the upwelling underwater polarized light field. The relationship between DoLP and the c/a ratio is investigated for the upwelling polarized light field for a complete set of viewing geometries, at several wavelengths in the visible part of the spectrum; for varying compositions of the aquatic environment, whose constituents include phytoplankton, non-algal particles, and color dissolved organic matter (CDOM); and for varying microphysical properties such as the refractive index and the slope of the Junge-type particle size distribution (PSD). Consequently, this study reveals the possibility for retrieval of additional inherent optical properties (IOPs) from air- or space-borne DoLP measurements of the water-leaving radiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.