Abstract

The purpose of this study was to compare the maximal exercise performance of 10 men during friction braked cycle ergometry of 20 s duration when resistive forces reflected total body mass (TBM) or fat free mass (FFM). Fat mass was calculated from the sum of skinfold thicknesses. Increases (P < 0.05) in peak power output (PPO) were found between TBM and FFM (1,015+/-165 W TBM vs 1,099+/-172 W FFM). Decreases (P < 0.05) were observed for the time taken to reach PPO (3.8+/-1.4 s TBM vs 2.9+/-1 s FFM). Pedal velocity increased (P < 0.05) during the FFM protocol (129.4+/-8.2 rpm TBM vs 136.3+/-8 rpm FFM). Rating of perceived exertion (RPE) was also (P < 0.05) greater for FFM (18.4+/-1.6 TBM vs 19.8+/-0.4 FFM). No changes were found for Mean Power Output (MPO), fatigue index (FI) or Work Done (WD) between trials. These findings suggest that high intensity resistive force loading protocols may need to be reconsidered. Results from this study indicate that the active tissue component of body composition needs consideration in resistive force selection when ascertaining maximal cycle ergometer power profiles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.