Abstract

Gliomas are the most common primary malignant tumors of the brain, accounting for about 80% of all central nervous system malignancies. With the development of molecular biology, the molecular phenotypes of gliomas have been shown to be closely related to the process of diagnosis and treatment. The molecular phenotype of glioma also plays an important role in guiding treatment plans and evaluating treatment effects and prognosis. However, due to the heterogeneity of the tumors and the trauma associated with the surgical removal of tumor tissue, the application of molecular phenotyping in glioma is limited. With the development of imaging technology, functional magnetic resonance imaging (MRI) can provide structural and function information about tumors in a noninvasive and radiation-free manner. MRI is very important for the diagnosis of intracranial lesions. In recent years, with the development of the technology for tumor molecular diagnosis and imaging, the use of molecular phenotype information and imaging procedures to evaluate the treatment outcome of tumors has become a hot topic. By reviewing the related literature on glioma treatment and molecular typing that has been published in the past 20 years, and referring to the latest 2020 NCCN treatment guidelines, summarizing the imaging characteristic and sensitivity of radiotherapy and chemotherapy of different molecular phenotypes of glioma. In this paper, we briefly review the imaging characteristics of different molecular phenotypes in gliomas and their relationship with radiosensitivity and chemosensitivity of gliomas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call