Abstract

BackgroundHormones, which influence satiety and hunger, play a significant role in body energy balance regulation. Ghrelin is a peptide that plays an important role in short-term appetite regulation, whereas leptin is a factor that controls long-term energy balance and is considered as a satiety hormone. The aim of this study was to evaluate the leptin/ghrelin ratio in a fasting state and after the intake of meals with varying macronutrient contents and to assess the possible differences between normal body weight and overweight/obese men.MethodsWe examined 46 healthy adult men (23 with normal body weight and 23 overweight/obese) aged 21–58, who were divided into two groups. In the crossover study, participants received isocaloric (450 kcal) meals with different macronutrient contents: men from the first group received high-carbohydrate (HC) and normo-carbohydrate (NC) meals, and in the second group, participants received high-carbohydrate and high-fat (HF) meals. The ratio of leptin/ghrelin levels was calculated from leptin and total ghrelin serum concentrations in a fasting state and 30, 60, 120, 180 and 240 min after meal intake. One-way ANOVA and Wilcoxon signed-rank tests were carried out. The normality of the variable distribution was checked with the Shapiro–Wilk test, the homogeneity of variances was verified with the Levene test, and the false discovery rate p-value adjustment method was used.ResultsThe leptin/ghrelin ratio was significantly higher in overweight/obese men than individuals with normal body weight in a fasting state, as well as postprandially. We observed trends towards a higher leptin/ghrelin ratio values from the 60 min after HC-meal intake compared to the NC- and HF-meals in normal body weight participants, while in overweight/obese men, we did not note any significant differences dependent on the meal type.ConclusionsWe have observed a significantly different postprandial leptin/ghrelin ratio in normal body weight and overweight/obese men, and our results suggest that in men with normal body weight, a greater feeling of satiety may occur after high-carbohydrate meal intake, which was not noted in the overweight/obese individuals.

Highlights

  • Hormones, which influence satiety and hunger, play a significant role in body energy balance regulation

  • We have observed a significantly different postprandial leptin/ghrelin ratio in normal body weight and overweight/obese men, and our results suggest that in men with normal body weight, a greater feeling of satiety may occur after high-carbohydrate meal intake, which was not noted in the overweight/obese individuals

  • In the central regulation of energy balance, other peripherally produced signals participate in this process, such as fatty acids, insulin, glucagon-like peptide-1 (GLP-1), ghrelin, cholecystokinin (CCK), peptide YY (PYY) [4, 5], as well as several other molecules recently linked to energy homeostasis regulation, such as chemerin, total bile acids, fibroblast growth factor 21 (FGF-21), secreted frizzled-related protein-4 (SFRP4), irisin, and heme oxygenase-1(HO-1) [6], which can be regulated by the macronutrient composition of the diet [4,5,6]

Read more

Summary

Introduction

Hormones, which influence satiety and hunger, play a significant role in body energy balance regulation. Ghrelin is a peptide that plays an important role in short-term appetite regulation, whereas leptin is a factor that controls long-term energy balance and is considered as a satiety hormone. The basic function of adipose tissue is energy storage, it is an organ of endocrine secretion, which produces hormones, adipokines and cytokines [2], such as leptin, adiponectin, which are involved in body energy homeostasis and many other pathways [3]. Many factors are involved in energy balance control, but one of the key roles in hormonal regulation of food intake is played by ghrelin and leptin, and their interactions, since these hormones affect the energy balance antagonistically [7,8,9]. Ghrelin plays an important role in short-term appetite regulation and is characterized by increased concentrations before meal intake, and decreased levels after meal ingestion [10]. The orexigenic action of ghrelin is based on increasing gastrointestinal peristalsis and reducing insulin secretion, and despite its appetite stimulation effects, it was found that obesity, type 2 diabetes mellitus and metabolic syndrome are associated with lower serum ghrelin concentrations [7, 8, 11]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.