Abstract

Abstract This study examines the relationship between relative vorticity, a key variable in mid-latitude synoptic motions, and precipitation in Iran. Using the S-mode PCA, activity centers of relative vorticity and precipitation were identified. Canonical correlation analysis (CCA) was applied to the factor scores of these centers to reveal coupled patterns of relative vorticity and precipitation. The analysis is based on 500- and 850-hPa relative vorticity fields at 2.5° grid points (10°–70° E and 10°–70° N) and uses monthly relative vorticity values from NCEP-DOE reanalysis databases (1981–2020) along with standardized rainfall data from 97 Iranian synoptic stations. Three main CCA patterns reveal connections: 500-hPa relative vorticity changes in the eastern Mediterranean, Middle East, and Iran relate to eastern Iran's precipitation. Relative vorticity over Eastern Europe inversely correlates with southern Caspian Sea coast precipitation. Changes over Turkey and Cyprus can affect northwestern Iran's rainfall. The changes in 850-hPa relative vorticity over the Arabian Sea inversely link to eastern Iran's precipitation, while those over the eastern Mediterranean directly connect to western Iran's precipitation. Relative vorticity changes in Eastern Europe negatively correlate with southwestern Caspian Sea coast precipitation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.