Abstract

BackgroundProteins evolve at disparate rates, as a result of the action of different types and strengths of evolutionary forces. An open question in evolutionary biology is what factors are responsible for this variability. In general, proteins whose function has a great impact on organisms’ fitness are expected to evolve under stronger selective pressures. In biosynthetic pathways, upstream genes usually evolve under higher levels of selective constraint than those acting at the downstream part, as a result of their higher hierarchical position. Similar observations have been made in transcriptional regulatory networks, whose upstream elements appear to be more essential and subject to selection. Less well understood is, however, how selective pressures distribute along signal transduction pathways.ResultsHere, I combine comparative genomics and directed protein interaction data to study the distribution of evolutionary forces across the human signal transduction network. Surprisingly, no evidence was found for higher levels of selective constraint at the upstream network genes (those occupying more hierarchical positions). On the contrary, purifying selection was found to act more strongly on genes acting at the downstream part of the network, which seems to be due to downstream genes being more highly and broadly expressed, performing certain functions and, in particular, encoding proteins that are more highly connected in the protein–protein interaction network. When the effect of these confounding factors is discounted, upstream and downstream genes evolve at similar rates. The trends found in the overall signaling network are exemplified by analysis of the distribution of purifying selection along the mammalian Ras signaling pathway, showing that upstream and downstream genes evolve at similar rates.ConclusionsThese results indicate that the upstream/downstream position of proteins in the signal transduction network has, in general, no direct effect on their rates of evolution, suggesting that upstream and downstream genes are similarly important for the function of the network. This implies that natural selection differently distributes across signal transduction networks and across biosynthetic and transcriptional regulatory networks, which might reflect fundamental differences in their function and organization.

Highlights

  • Proteins evolve at disparate rates, as a result of the action of different types and strengths of evolutionary forces

  • On the contrary, purifying selection was found to act more severely on genes acting at the downstream part of the network, which seems to be due to downstream genes being more highly and broadly expressed, having certain functions and, in particular, encoding proteins that are more highly connected in the protein–protein interaction network

  • The trend found in the overall signaling network is exemplified by analysis of the distribution of purifying selection along the mammalian Ras signaling pathway, showing that, contrary to previously suggested in Drosophila, upstream and downstream genes evolve at similar rates

Read more

Summary

Introduction

Proteins evolve at disparate rates, as a result of the action of different types and strengths of evolutionary forces. Genes encoding the most connected proteins in metabolic and protein– protein interaction networks are more selectively constrained than those acting at the network periphery [14,15,16,17,18,19], and interacting genes tend to show correlated evolutionary histories, e.g. evolving at similar rates [14,16,20,21,22,23,24] These observations indicate that the structure of molecular networks impose constraints on the evolution of their components

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call