Abstract

I conducted computer simulations of food web evolution and investigated the relationship between the duration of food web evolution and the vulnerability to biological invasion. Model food webs without evolution consisted of animal species with a limited number of prey species and producer species with small intrinsic growth rates. Because these species were not resistant to predation pressure, model food webs without evolution were vulnerable to invasion of powerful omnivores, which had a wide range of feeding preference and a high ecological efficiency. In model food webs without evolution, the number of animal species depending on producer species was small. Therefore, if a producer species invaded and disturbed the base of such food webs, few animal species became extinct. However, model food webs with a long time evolution had a structure that a small number of producer species supported a large number of animal species. When a producer species invaded and disturbed the base of such food webs in this state, many species became extinct by an indirect effect. The mean number of prey species of animal species and the mean intrinsic growth rate of producer species increased rapidly in the early stage of evolution. Therefore, in the early stage of food web evolution, food webs were temporarily resistant to invasion of powerful omnivores. However, this resistibility was not maintained for a long time. The result of this study strongly suggests that food webs change with time, and consequently the vulnerability to invasion changes with time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call