Abstract

Measurements of advancing contact angle ( θ) were carried out on polytetrafluoroethylene (PTFE) and polymethylmethacrylate (PMMA) for aqueous solution of sodium dodecyl sulfate (SDDS) mixtures with methanol, ethanol and propanol in the range of SDDS concentration from 10 −5 to 10 −2 M, and for sodium hexadecyl sulfonate (SHS) with the same alcohols at the SHS concentration ranging from 10 −5 to 8 × 10 −4 M at 293 K. The concentration of methanol, ethanol and propanol used for measurements varied from 0 to 21.1, 11.97 and 6.67 M, respectively. On the basis of the contact angles the critical surface tension of PTFE and PMMA wetting was determined by using for this purpose the relationship between the adhesion and the surface tension and cos θ and surface tension both at constant alcohol and surfactant concentration, respectively. The obtained contact angles were also used in the Young Dupre’ equation for calculations of the adhesion work of aqueous solution of mixtures of anionic surfactants and short chain alcohols to PTFE and PMMA surface. The adhesion work calculated in this way was compared to that of the particular components of aqueous solution to these surfaces determined on the basis of the surface tension components and parameters of the surface tension of the surface active agents, water, PTFE and PMMA from van Oss et al. equation. The calculated adhesion work was discussed in the light of the concentration of surface active agents at polymer–water and water–air interface determined from Lucassen-Reynders, Gibbs and Guggenheim-Adam equations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.