Abstract
The aim of this study was to analyze the relationship of snoring sound signals obtained by polysomnography (PSG) in the sleep laboratory with cortical EEG (6 channel) signals to find answers to two important questions that have been covered to a limited extent in the literature: (1) Would the sounds generated by a snoring individual have an effect on the cerebral electrical waves occurring during sleep (specifically deep restorative sleep)? (2) Would the snoring sounds of an individual being examined by PSG have more of an effect on any one of the EEG electrodes? PSG recordings were obtained from volunteers with primary snoring and those withobstructive sleep apnea syndrome (OSAS) on six different EEG channels (F4-M1, C4-M1, and O2-M1, F3-M2, C3-M2, and O1-M2). The relationship of each of these recordings and snoring sound signals was analyzed by using a computer-based electrophysiological signal analysis method. A three-tier approach was used in this relationship: "Feature extraction, Feature selection, andClassification". Data were obtained from a total of 40 volunteers (32 men, mean age (± SD) 47.5± 3.2 years), 20 with primary snoring and 20 with OSAS. The discrete wavelet transform (DWT) feature extraction method was the most successful method, and by utilizing this method for analyzing EEG channels, snoring sound signals were found to affect theC3-M2 channel the most (Duncan test, p < 0.05). Delta wave frequency levels during snoring were decreased compared to both before snoring (p = 0.160) and after snoring (p = 0.04) periods (paired sample test). When snoring sounds and EEG signals were analyzed for frequency, time, and wave conversion with feature extraction methods, theC3-M2 channel was to be found the most affected channel.The sleep physiologist who made the PSG analyses reported that, among the 6 EEG channels analyzed for periods where there was no apnea or hypopnea events but only snoring, C3-M2 was the channel showing changes in delta wave activity. Our study showed that the monotonous and repetitive snoring sounds of the snorer do not wake the individual, but doaffect deep restorative sleep (N3). PSG signal analysis revealed that the most significant changes were in the C3-M2 channel (N3 delta wave amplitude increase and frequency decrease during snoring). Thus, clinicians may be able to monitor the characteristic changes occuring in large cortical delta waves in snoring individuals with innovative single-channel EEG devices without microphones.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.