Abstract

The objective of this study was to define the quantitative relationship between external dynamic shoulder torques and calibrated perceived muscular effort levels for load delivery tasks, for application in job analyses. Subjects performed a series of loaded reaches and, following each exertion, rated their perceived shoulder muscular effort. Motion and task physical requirements data were processed with a biomechanical upper extremity model to calculate external dynamic shoulder torques. Calculated torque values were then statistically compared to reported calibrated perceived muscular effort scores. Individual subject torque profiles were significantly positively correlated with perceived effort scores (r2 = 0.45–0.77), with good population agreement (r2 = 0.50). The accuracy of the general regression model improved (r2 = 0.72) with inclusion of factors specific to task geometry and individual subjects. This suggests two major conclusions: 1) that the perception of muscular shoulder effort integrates several factors and this interplay should be considered when evaluating tasks for their impact on the shoulder region; 2) the torque/perception relationship may be usefully leveraged in job design and analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.