Abstract

BackgroundHypoxia-inducible factor 1 (HIF-1), a master regulator of oxygen homeostasis, is a heterodimer consisting of HIF-1α and HIF-1β subunits, and is implicated in calcification of cartilage and vasculature. The goal of this study was to determine the relationship between serum HIF-1α with coronary artery calcification (CAC) in patients with type 2 diabetes.MethodsThe subjects were 405 (262 males, 143 females, age 51.3 ± 6.4 years) asymptomatic patients with type 2 diabetes mellitus. Serum HIF-1α and interleukin-6 (IL-6) levels were measured by ELISA. CAC scores were assessed by a 320-slice CT scanner. The subjects were divided into 4 quartiles depending on serum HIF-1α levels.ResultsAverage serum HIF-1α was 184.4 ± 66.7 pg/ml. Among patients with higher CAC scores, HIF-1α levels were also significantly increased (p <0.001). HIF-1α levels positively correlated with CRP, IL-6, UKPDS risk score, HbA1c, FBG, and CACS, but did not correlate with diabetes duration, age, and LDL. According to the multivariate analysis, HIF-1α levels significantly and independently predict the presence of CAC. ROC curve analysis showed that the serum HIF-1α level can predict the extent of CAC, but the specificity was lower than the traditional risk factors UKPDS and HbA1c.ConclusionAs a marker of hypoxia, serum HIF-1α level may be an independent risk factor for the presence of CAC. These findings indicate that elevated serum HIF-1α may be involved in vascular calcification in patients with type 2 diabetes mellitus.

Highlights

  • Vascular calcification is a complex and dynamic process and regulated by multiple mechanisms [1]

  • HIF-1α levels positively correlated with C-reactive protein (CRP) (r = 0.226, P = 0.023), IL-6 (r = 0.316, P

  • Key findings In this cross-sectional study on asymptomatic type 2 diabetic subjects, we first evaluated the association between serum HIF-1α level and CAC, which is a good biomarker of the presence and amount of coronary atherosclerosis

Read more

Summary

Introduction

Vascular calcification is a complex and dynamic process and regulated by multiple mechanisms [1]. It is associated with aging and several disease states, including atherosclerosis, osteoporosis, chronic kidney disease, and diabetes. As an important part of vascular calcification, coronary artery calcification (CAC) can be rapidly and noninvasively quantitatively determined by computed tomography (CT). In patients with type 2 diabetes without cardiovascular symptoms, we aimed to: 1) examine the relationship between serum HIF-1α level and CAC; 2) evaluate the ability to predict the extent of coronary calcification. The goal of this study was to determine the relationship between serum HIF-1α with coronary artery calcification (CAC) in patients with type 2 diabetes

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call