Abstract

We examine surface sediment and water column total nutrient and chlorophyll a concentrations for 12 estuaries with average water depths <4 m, and calculated sediment loads ranging from 0.2 to 10.8 kg m−2 year−1. Sediment total nitrogen, phosphorus and organic carbon concentrations vary inversely with sediment loads due to: (i) the influx of more mineral-rich sediment into the estuaries; and (ii) increasing sediment sulfidation. Sediment total organic carbon (TOC) : total sulfur (TS) and TS : Fe(II) ratios correlated to sediment loads because enhanced sedimentation increases burial, hence the importance of sulfate reduction in organic matter degradation. Curvilinear relationships were found between a weathering index and organic matter δ13C in sediment, and sediment load. The rising phase of the curve (increasing weathering, lighter isotopic values) at low to intermediate loads relates to soil erosion, whereas regolith or bedrock erosion probably explains the declining phase of the curve (decreasing weathering, heavier isotopic values) at higher sediment loads. The pattern of change for water column total nutrients (nitrogen and phosphorus) with sediment loads is similar to that of the weathering index. Most water quality problems occur in association with soil erosion, and at sediment loads that are intermediate for the estuaries studied. Limited evidence is presented that flushing can moderate the impact of sediment loads upon the estuaries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.