Abstract

Technological change in the work force is a critical problem in business and industry, precipitating the quick obsolescence and emergence of job skills and training (Fairhurst, 1990). Cornish (1977) describes the tremendous change that has occurred within our society as convulsive. Change is also perhaps, the most appropriate term to describe the reformation that is currently taking place in the field of technology education. Changes in the goals, activities, instructional methodologies, and types of instructional programs within technology education has caused considerable debate within the profession. Indeed, the instructional field of technology education has undergone radical changes in past years. Ever since the pioneering curricular efforts of William Warner in the late 1940’s technology education has progressively strived to move beyond a product-based curriculum to a more process-based curriculum that strives to encourage and develop higher-order thinking in students (Wicklein, 1993). The decade of the 1990s promises to bring even more significant changes to the field of technology education. The development of the Conceptual Framework for Technology Education (Savage & Sterry, 1991) presented both a theoretical and practical approach to understanding the instructional goals and objectives of technology education. Further, current efforts to develop curricula that integrates technology education with science and mathematics is currently viewed as a significant focus of change for the field (LaPorte & Sanders, 1993; Wicklein & Schell, 1995) that will have serious impact on the field of technology education in the coming years (LaPorte & Sanders, 1993; Scarborough, 1993; Wicklein & Schell, 1995). The debate over changes that have been made in the field of technology education and the current direction of the field has created a certain degree of

Highlights

  • The instructional field of technology education has undergone radical changes in past years

  • The current study investigated the relationship between psychological type and professional orientation among educators in the technology education field of study

  • An overall distribution of respondents on the 16 Myers-Briggs Type Indicator (MBTI) personality types revealed a higher prevalence of the personality type preferences ESTJ, ENTJ, ENFJ, ISTJ than that found in the general population

Read more

Summary

Introduction

The instructional field of technology education has undergone radical changes in past years. Jung (1923) theorized that what appears to be random variation in human behavior is quite orderly, logical, and consistent, and is the result of a few basic differences in mental functioning and attitude These observable differences affect what people perceive, as well as how they draw conclusions about those perceptions (Lamberth, Rappaport, & Rappaport, 1978; Myers, 1980; Myers & McCaulley, 1985; Vogt & Holder, 1988; Weade & Gritzmacher, 1987; Zeisset, 1989). On the other hand, describes a rational act of evaluation using subjective values and relative merits of the issues (Lawrence, 1982; Myers, 1980; Plessman, 1985; Weade & Gritzmacher, 1987; Zeisset, 1989)

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.