Abstract

The severe exercise intensity domain may be defined as that range of work rates over which .VO(2max) can be elicited during constant-load exercise. The purpose of this study was to help characterize the .VO(2) response within this domain. Eleven participants performed cycle ergometer exercise tests to fatigue at several discrete work rates between 95% and 135% of the maximum power (P(max)) achieved during an incremental exercise test. As previously demonstrated, the relationship between power and time to fatigue was hyperbolic. The asymptote of power (critical power, P(critical)) was 198 +/- 44 W. The rapidity of the .VO(2) response increased systematically at higher work rates such that the relationship between power and time to .VO(2max) was also well fit by a hyperbola. The power asymptote of this relationship (196 +/- 42 W) was not different from P(critical)(P > 0.05). The two hyperbolic relationships converged at 342 +/- 70 W (136% P(max)). These data suggest that, for this population of male and female university students, the upper boundary of the severe exercise intensity domain is approximately 136% P(max). This upper boundary is the highest work rate for which exercise duration is prolonged sufficiently (in this study, 136 +/- 17 s) to allow .VO(2) to rise to its maximal value. The lower boundary for severe exercise is just above P(critical), which is the highest work rate that is sustainable for a prolonged duration and that will not elicit .VO(2max).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.