Abstract

Platelets in diamond are extended planar defects that are thought to be generated during the nitrogen aggregation process in type Ia diamonds. They were subjected to intensive research during the 1980s and 1990s but the techniques used for observation of defects in diamond have improved since that time and new insights can be gained by further study. This study combines high resolution Fourier Transform Infrared (FTIR) analysis, with an emphasis on the main platelet peak, and transmission electron microscopic (TEM) imaging. By performing TEM and FTIR analyses on volumes of diamond that were closely spatially related it is shown that the average platelet diameter, D, follows the relationship D=ax−b where x is the position of the platelet peak in the infrared spectrum, a is a constant and b is the minimum position of the platelet peak. The best fit to the data is obtained if a value of b=1360cm−1 is used, giving a fitted value of a=221. The observed variation in infrared (IR) peak width can also be explained in terms of this relationship. Additionally, platelet morphology was found to vary according to diameter with large platelets being more elongated. The tendency to become more elongated can be described by the empirical equation AR=11.9D+19.6+0.4 where AR is the aspect ratio. Using the relationships established here, it will be possible to study platelet abundance and size as a function of parameters such as nitrogen concentration, nitrogen aggregation and diamond residence time in the mantle. This work therefore will open up new methods for constraining the geological history of diamonds of different parageneses and from different localities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.