Abstract

Bench-grafted Fuji/M.26 apple (Malus domestica Borkh.) trees were fertigated with different concentrations of nitrogen by using a modified Hoagland's solution for 45 d. CO(2) assimilation and photosystem II (PSII) quantum efficiency in response to incident photon flux density (PFD) were measured simultaneously in recent fully expanded leaves under low O(2) (2%) and saturated CO(2) (1300 micromol mol(-1)) conditions. A single curvilinear relationship was found between true quantum yield for CO(2) assimilation and PSII quantum efficiency for leaves with a wide range of leaf N content. The relationship was linear up to a quantum yield of approximately 0.05 mol CO(2) mol(-1) quanta. It then became curvilinear with a further rise in quantum yield in response to decreasing PFD. This relationship was subsequently used as a calibration curve to assess the rate of non-cyclic electron transport associated with Rubisco and the partitioning of electron flow between CO(2) assimilation and photorespiration in different N leaves in response to intercellular CO(2) concentration (C(i)) under normal O(2) conditions. Both the rate of non-cyclic electron flow and the rate of electron flow to CO(2) or O(2) increased with increasing leaf N at any given C(i). The percentage of non-cyclic electron flow to CO(2) assimilation, however, remained the same regardless of leaf N content. As C(i) increased, the percentage of non-cyclic electron flow to CO(2) assimilation increased. In conclusion, the relationship between PSII quantum efficiency and quantum yield for CO(2) assimilation and the partitioning of electron flow between CO(2) assimilation and photorespiration are not affected by N content in apple leaves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call