Abstract

Abstract The boundaries between pairs of adjacent fault segments within normal fault arrays define a spectrum of structures, from relay ramps where the length of overlap between the fault segments is much larger than the separation, through low aspect ratio (overlap/separation) relay ramps and ultimately to underlapping fault segments. Where fault segments underlap, transfer of displacement between them is accommodated by a connecting monocline. When displacement increases and a through-going fault forms, relay ramps are preserved as fault-bounded zones of elevated bed dip and monoclines are preserved as areas of normal drag. Therefore, the orientation and magnitude of bed dips within and adjacent to a fault zone, and the numbers of segments seen on a cross-section through it, depend largely on the aspect ratios of relay ramps in the initial fault array. The aspect ratio of relay ramps varies between different fault systems. An analysis of the geometry of 512 relay ramps from 13 different fault systems suggests that the main controls on aspect ratio are the strength of the sequence at the time of faulting and the underlying structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.