Abstract
Fertigation of young Fuji/M26 apple trees (Malus domestica Borkh.) with different nitrogen concentrations by using a modified Hoagland solution for 6 weeks resulted in a wide range of leaf nitrogen content in recently expanded leaves (from 0.9 to 4.4 g·m–2). Net photosynthesis at ambient CO2, carboxylation efficiency, and CO2-saturated photosynthesis of recently expanded leaves were closely related to leaf N content expressed on both leaf area and dry weight basis. They all increased almost linearly with increase in leaf N content when leaf N < 2.4 g·m–2, leveled off when leaf N increased further. The relationship between stomatal conductance and leaf N content was similar to that of net photosynthesis with leaf N content, but leaf intercellular CO2 concentration tended to decrease with increase in leaf N content, indicating non-stomatal limitation in leaves with low N content. Photosynthetic nitrogen use efficiency was high when leaf N < 2.4 g·m–2, but decreased with further increase in leaf N content. Due to the correlation between leaf nitrogen and phosphorus content, photosynthesis was also associated with leaf P content, but to a lesser extent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.