Abstract

Leaf area growth determines the light interception capacity of a crop and is often used as a surrogate for plant growth in high-throughput phenotyping systems. The relationship between leaf area growth and growth in terms of mass will depend on how carbon is partitioned among new leaf area, leaf mass, root mass, reproduction, and respiration. A model of leaf area growth in terms of photosynthetic rate and carbon partitioning to different plant organs was developed and tested with Arabidopsis thaliana L. Heynh. ecotype Columbia (Col-0) and a mutant line, gigantea-2 (gi-2), which develops very large rosettes. Data obtained from growth analysis and gas exchange measurements was used to train a genetic programming algorithm to parameterize and test the above model. The relationship between leaf area and plant biomass was found to be non-linear and variable depending on carbon partitioning. The model output was sensitive to the rate of photosynthesis but more sensitive to the amount of carbon partitioned to growing thicker leaves. The large rosette size of gi-2 relative to that of Col-0 resulted from relatively small differences in partitioning to new leaf area vs. leaf thickness.

Highlights

  • Leaf area growth determines light interception and is an important parameter in determining plant productivity (Gifford et al, 1984; Koester et al, 2014)

  • The durations of the growth phases were derived from experimental data obtained from Col-0 plants grown under an 8 h photoperiod

  • Total leaf area of gi-2 was more than 2 times larger at 86 days after seeding (DAS) than that in Col-0 (Figure 3A, Supplementary Figure 1 in Presentation 1)

Read more

Summary

Introduction

Leaf area growth determines light interception and is an important parameter in determining plant productivity (Gifford et al, 1984; Koester et al, 2014). High-throughput phenotyping of plants often relies on optical methods in which leaf area growth is compared with estimates of photosynthesis derived from fluorescence signals. Optical measurements such as leaf area are well suited for high throughput screening for plants with altered photosynthetic rates because they are non-destructive and cost-effective (Golzarian et al, 2011; Zhang et al, 2012; Tessmer et al, 2013). In order to use leaf area as a tool to screen for plants with enhanced biomass or mass-based relative growth rates (RGRM) (see Table 1 for a list of abbreviations), it is important to understand the relationship between leaf area growth and accumulation of biomass.

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.