Abstract

The Xiangho Zng district is the largest low-temperature W-Au-Sb metallogenic area in the world. The Darongxi skarn W deposit in the north of the Xiangzhong district is closely related to biotite monzonite granite, muscovite monzonite granite, and felsophyre, but the nature of granitic magma and its relationship with mineralization is relatively weak. In this paper, U-Pb dating, Lu-Hf isotope, the in situ composition of zircon, and the apatite of biotite monzonite granite, muscovite monzonite granite, and felsophyre in the Darongxi mining area are systematically studied, and the formation age, magma property and source, and their relationship with mineralization are discussed. The values of zircon U-Pb age and the εHf(t) of biotite monzonite granite are 222.2 ± 0.54 Ma and −2.9~−6.4, respectively. The values of zircon U-Pb age and the εHf(t) of muscovite monzonite granite are 220.8 ± 0.58 Ma and −2.7 to −8.1, respectively. The values of zircon U-Pb age and the εHf(t) of felsophyre are 222.3 ± 2.20 Ma and −2.2~−5.4, respectively. Magmatic apatite grains from biotite monzonite granite and muscovite monzonite granite show distinctive core–rim and oscillatory zoning textures in CL images, and demonstrate a bright yellow in colorful CL images. The magmatic apatite has a total rare earth concentration (3766~4627 ppm), exhibiting right-inclined nomorlized rare earth element patterns and obvious negative Eu anomalies. The geochemical data of magmatic zircon and apatite indicate that magma sources are responsible for these intrusions in the Darongxi mining area, mainly derived from the partial melting of the Mesoproterozoic crust, which is rich in W; the magma is rich in F and poor in Cl (F = 2.4~3.3 wt%, Cl = 0.0024~0.0502 wt%). The oxygen fugacity of magmatic zircon (ΔFMQAVG = −4.02~−0.26), the high negative Eu anomaly (δEu = 0.06~0.12) and the low positive Ce anomaly (δCe = 1.09~1.13) of magmatic apatite, and the occurrence of ilmenite all indicate that the redox condition of magma from the Darongxi mining area is reduced. The reduced F-rich crust-source granitic rock and W-rich source provide favorable conditions for the mineralization of the Darongxi reduced skarn W deposit.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.