Abstract
A thermodynamically open system, based on an assembly of capillaries with semi-permeable walls was constructed in order to study glycolysis in human erythrocytes in high haematocrit suspensions. A phenomenological expression for the rate of lactate production as a function of glucose concentration was obtained. The rate was measured under steady-state conditions with low substrate concentrations (approx. 50 μmol/l). In a corresponding closed system, this concentration of glucose would be exhausted within a few minutes. A mathematical model of the whole system consisted of five differential equations, and involved parameters relating to flow rates, volumes of reaction chambers, the rates of lactate efflux from erythrocytes and the expression for the rate of lactate production by red cells. The binding of [ 14C]pyruvate to haemoglobin and the rate of efflux of [ 14C]lactate from red cells were measured to yield additional information for the model. The concentrations of ATP and 2,3-bisphosphoglycerate were measured during the perfusion experiments, and a detailed analysis of a model of red cell hexokinase was carried out; the former two compounds inhibit hexokinase and alter the apparent K m and V max for glucose in vivo. These steady-state parameters were similar to the glucose concentration at the half-maximal rate of lactate production and the maximal rate, respectively. These findings are consistent with the known high control-strength for hexokinase in glycolysis in human red cells. The practical and theoretical validation of this perfusion system indicates that it will be valuable for NMR-based studies of red cell metabolism using a flow-cell in the spectrometer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.