Abstract

While several studies of task-based effective connectivity of normal language processing exist, little is known about the functional reorganization of language networks in patients with stroke-induced chronic aphasia. During oral picture naming, activation in neurologically intact individuals is found in “classic” language regions involved with retrieval of lexical concepts [e.g., left middle temporal gyrus (LMTG)], word form encoding [e.g., left posterior superior temporal gyrus, (LpSTG)], and controlled retrieval of semantic and phonological information [e.g., left inferior frontal gyrus (LIFG)] as well as domain-general regions within the multiple demands network [e.g., left middle frontal gyrus (LMFG)]. After stroke, lesions to specific parts of the left hemisphere language network force reorganization of this system. While individuals with aphasia have been found to recruit similar regions for language tasks as healthy controls, the relationship between the dynamic functioning of the language network and individual differences in underlying neural structure and behavioral performance is still unknown. Therefore, in the present study, we used dynamic causal modeling (DCM) to investigate differences between individuals with aphasia and healthy controls in terms of task-induced regional interactions between three regions (i.e., LIFG, LMFG, and LMTG) vital for picture naming. The DCM model space was organized according to exogenous input to these regions and partitioned into separate families. At the model level, random effects family wise Bayesian Model Selection revealed that models with driving input to LIFG best fit the control data whereas models with driving input to LMFG best fit the patient data. At the parameter level, a significant between-group difference in the connection strength from LMTG to LIFG was seen. Within the patient group, several significant relationships between network connectivity parameters, spared cortical tissue, and behavior were observed. Overall, this study provides some preliminary findings regarding how neural networks for language reorganize for individuals with aphasia and how brain connectivity relates to underlying structural integrity and task performance.

Highlights

  • Language is arguably one of the most advanced human cognitive functions, involving the ability to decode incoming messages and communicate complex thoughts in a variety of contexts

  • We investigated how effective connectivity of a frontotemporal network induced by a picture naming task differed between neurologically intact participants and persons with aphasia (PWA)

  • As we were most interested in cortical reorganization in the PWA group, we examined the relationships between connectivity parameters, the amount of spared tissue in each region of interest, and behavioral performance

Read more

Summary

Introduction

Language is arguably one of the most advanced human cognitive functions, involving the ability to decode incoming messages and communicate complex thoughts in a variety of contexts. Neuroscientists have increasingly adopted and demonstrated support for a hodological view of neural organization in which specialized, anatomically segregated cortical regions demonstrate integrated functioning for successful task completion (Friston, 2011). In accordance with this view, the neuroimaging literature has shown that language processing involves a distributed neural network involving bilateral frontal, temporal and parietal regions (see reviews by e.g., Vigneau et al, 2006, 2011; Price, 2010, 2012)

Objectives
Methods
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call