Abstract
Fully lamellar (FL) Ti–46.5Al–2Cr–1.5Nb–1V (at%) alloy is used to study the relationship between microstructure and fracture toughness. A heat treatment process is adopted to control the microstructural parameters of the studied alloy. Fracture toughness experiments and scanning electron microscope (SEM) in-situ straining experiments are carried out to determine the influence of lamellar spacing and grain size on the fracture toughness of FL TiAl alloys. It is found that ligament length depends on the lamellar spacing, and fracture toughness varies non-monotonously with the increase of grain size. The results are ascribed to the competition between the microcrack nucleation and microcrack propagation. Finally a semi-empirical relationship between the fracture toughness and microstructure parameters was established.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.