Abstract

To try to find a correlation between the antiproliferative activity of a series of [M(I)(P)4](+) complexes (M = Cu, Ag and Au; P = tertiary phosphine) and their stability at micromolar concentration under mass spectrometric conditions. [M(I)(P)4](+) complexes were investigated by positive ion electrospray ionization mass spectrometry with multiple collisional experiments using an ion trap mass spectrometer. The displacement of P from native [M(I)(P)4](+), previously described for the copper derivative, is common for the triad complexes leading to the formation of [M(P)3](+) and [M(P)2](+) adducts. Further dissociation of [M(P)2](+) depends on the nature of the metal (Cu ~ Ag > Au). More labile [Cu(P)2](+) and [Ag(P)2](+) are more cytotoxic against HCT-15 human colon carcinoma cells compared to less labile [Au(P)2](+) species. The dissociation of P ligand(s) from the [M(I)(P)4](+) complexes is the driving force for the triggering of the antiproliferative activity. The more favored is the displacement of P from the [M(P)2](+) active form, the more favored is in turn the possibility for the metal to interact with biological substrates related to cancer proliferation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.