Abstract

The molecular basis for chromosome aberration formation has been studied using the sensitive techniques of premature chromosome condensation and DNA alkaline elution. The dose response of Chinese hamster ovary cells to bleomycin treatment at the DNA and chromosome levels was compared. Each DNA elution curve showed a 2-component profile, with a more sensitive component apparent at low doses. The chromosome aberration curves also exhibited a 2-component profile when determined in G 2-PCC; however, this phenomenon was less apparent when chromosome damage was enumerated in mitotic figures. These results suggest that differential sensitivity to bleomycin exists within the cellular chromatin. The effect of dose rate on aberration formation was examined by administering bleomycin at 2 concentrations that, with different treatment times, yielded equivalent amounts of DNA damage. The chromatid exchange rate was independent of dose rate, suggesting that rapidly repaired DNA lesions are not involved in the formation of exchanges.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.