Abstract

Hepatocyte proliferation and differentiation occur simultaneously during late mammalian gestation. We hypothesized that regulation of hepatocyte growth and differentiation would be coordinated in late gestation fetal hepatocyte cultures such that proliferation would be most active in a population of less well-differentiated cells. Cultured fetal hepatocytes (embryonic d 19 and 21; E19 and E21) were studied using double staining immunofluorescent microscopy. Differentiation was assessed as staining for alpha-fetoprotein (AFP), three markers of enzymic differentiation (glucokinase [GK], phosphoenolpyruvate carboxykinase [PEPCK], and carbamoyl phosphate synthase [CPS]), and a hepatocyte cell-cell adhesion molecule (C-CAM). Proliferation was assessed using immunocytochemical detection of proliferating cell nuclear antigen (PCNA) or 5-bromo-2'-deoxy-uridine (BrdU) incorporation into DNA. Fetal hepatocyte cultures consisted of a heterogeneous population of cells, slightly more than half of which were proliferative under defined, growth factor-free conditions. These cultures were heterogeneous for AFP expression. There was no correlation between the expression of AFP and PCNA or AFP and S-phase entry (BrdU staining) during the first 48 h in culture. Similar results were obtained in staining for the enzymic differentiation markers and C-CAM. In addition, the differentiation status of cultured fetal hepatocytes was unrelated to a presumed indicator of mature growth regulation, mitogenic responsiveness to transforming growth factor alpha (TGFalpha), and hepatocyte growth factor (HGF). Finally, absence of any correlation between proliferation and differentiated phenotype was supported by in vivo studies using staining for PCNA, AFP, CPS, and PEPCK in liver sections. These results indicate that the developmental program governing differentiation of late gestation fetal rat hepatocytes is independent from mechanisms controlling proliferation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.