Abstract

Measurement of the frequency-dependent, vector voltage (Vc) provided an in-situ and non-destructive technique to measure continuously the rheological change of a resin due to polymerization, and can be used as the basis of real-time control. The vector voltage depends on the degree of polarization of the dipolar molecules and on the change of viscosity during cure; both result from the modified structure of the epoxy resin during cure, The initial stage of curing, represented by the former portion Of the Vc curve (divided at the minimum of the Vc curve), was caused mainly by the effects of temperature and viscosity. During the latter stage of the cure reaction, Vc alters because of the effect of the lightened matrix structure that inhibits alignment of dipoles. The duration of reaction. temperature of curing and degree of conversion all have the same effects on both vector voltage and viscosity, The minimum value of vector voltage is correlated to the minimum viscosity, and there is a nearly quantitative relationship between them, One can determine the viscosity of the epoxy resin during cure from reading of the vector voltage. Various reaction mechanisms may be explained based on the graphs of vector voltage of various types.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call