Abstract

Nearly one-third of all women and one-sixth of all men over age 65 have osteoporosis, and this condition is often accompanied by lumbar scoliosis. Previous work has shown that, in a group of postmenopausal women with scoliosis and osteoporosis, both the bone mineral content (BMC) and bone mineral density (BMD) were greater on the concave side than the convex side. The goal of this study was to examine the structure-function relationships in the spines of patients with low bone mass and scoliosis using a patient-specific biomechanical model. We compared the percent change in BMC and the percent change in BMD with axial force, F(a), shear force, F(s), moment, M, local curvature, theta(rel), and the patient's age, A. We found that the percent change in BMC depended on the applied moment and the local curvature. The same dependence was observed for the percent change in BMD, but in this case, the shear force was also significantly inversely correlated. A population with femoral neck BMD with a T-score greater than -2.0 was similarly evaluated and yielded similar results. The percent change in BMD was related to M, theta(rel), A and negatively to the shear force. These results indicate that the osteoporotic spine is still able to respond to changes in the mechanical environment and provides a useful comparison between patients with osteoporosis and those with normal bone mass. In addition, this model may be a useful tool for the in vivo assessment of bone density changes in response to mechanical stimuli and drug treatments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.