Abstract
BackgroundMany animals display morphological and behavioural adaptations to the habitats in which they live and the resources they exploit. Bite force is an important whole-organism performance trait that allows an increase in dietary breadth, the inclusion of novel prey in the diet, territory and predatory defence, and is important during mating in many lizards.MethodsHere, we study six species of southern African agamid lizards from three habitat types (ground-dwelling, rock-dwelling, and arboreal) to investigate whether habitat use constrains head morphology and bite performance. We further tested whether bite force and head morphology evolve as adaptations to diet by analysing a subset of these species for which diet data were available.ResultsOverall, both jaw length and its out-lever are excellent predictors of bite performance across all six species. Rock-dwelling species have a flatter head relative to their size than other species, possibly as an adaptation for crevice use. However, even when correcting for jaw length and jaw out-lever length, rock-dwelling species bite harder than ground-dwelling species. Diet analyses demonstrate that body and head size are not directly related to diet, although greater in-levers for jaw closing (positively related to bite force) are associated to an increase of hard prey in the diet. Ground-dwelling species consume more ants than other species.ConclusionsOur results illustrate the role of head morphology in driving bite force and demonstrate how habitat use impacts head morphology but not bite force in these agamids. Although diet is associated with variation in head morphology it is only partially responsible for the observed differences in morphology and performance.
Highlights
Many animals display morphological and behavioural adaptations to the habitats in which they live and the resources they exploit
Variation in head morphology is relevant in many ecological and social contexts
A multiple regression performed on the head measures with bite force as the dependent variable retained a single significant model (R2 = 0.94; P < 0.01) with the jaw out-lever (β = 0.52) and lower jaw length (β = 0.45) as significant predictors (Table 1)
Summary
Many animals display morphological and behavioural adaptations to the habitats in which they live and the resources they exploit. Bite force is an important whole-organism performance trait that allows an increase in dietary breadth, the inclusion of novel prey in the diet, territory and predatory defence, and is important during mating in many lizards. Variation in head morphology is relevant in many ecological (feeding, habitat and refuge use) and social contexts (territorial display, mating, and aggressive interactions). Tan et al BMC Ecol Evo (2021) 21:126 bite force This performance trait has been related to both diet and territory defence [4,5,6,7,8]. Larger heads (length, width and height) should result in an increase in bite force as they provide more space for the jaw adductor muscles [4, 6]. An increase in lower jaw length increases the out-lever of the jaw system which should reduce bite force as the lower jaw act as a lever system which transmits the input force from muscles to the out-lever arm to produce an output force [10]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.