Abstract
Abstract Reanalysis data and radiation budget data are used to calculate the role of the atmospheric cloud radiative effect in determining the magnitude of horizontal export of energy by the tropical atmosphere. Because tropical high clouds result in net radiative heating of the atmosphere, they increase the requirement for the atmosphere to export energy from convective regions. Increases in upper-tropospheric water vapor associated with convection contribute about a fifth of the atmospheric radiative heating anomaly associated with convection. Over the warmest tropical oceans, the radiative effect of convective clouds and associated water vapor is roughly two-thirds the value of the atmospheric energy transport. Cloud radiative heating and atmospheric heat transport increase at the same rate with increasing sea surface temperature, suggesting that the increased energy export is supplied by the radiative heating associated with convective clouds. The net cloud radiative effect at the top of the atmosphere is insensitive to changes in SST over the warm pool. Principal component analysis of satellite-retrieved cloud data reveals that the insensitivity of the net cloud radiative effect to SST is the result of changes in cloud amount offsetting changes in cloud optical thickness and cloud-top height. While increasing upward motion makes the cloud radiative effect more negative, that decrease is offset by reductions in outgoing longwave radiation owing to increases in water vapor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.