Abstract

Poly(adenosine diphosphate [ADP]-ribosyl)ation, although associated with differentiation in many systems, exhibited a reciprocal relationship with mammary gland differentiation, and both the synthetic and degradatory pathways complemented each other in this regard. Poly(ADP-ribosyl)synthetase activity declined during pregnancy and lactation, while poly(ADP-ribose) degradatory activity rose late in pregnancy and peaked during lactation. In explant cultures, similar changes occurred and appeared to be under separate hormonal control; prolactin suppressed the synthetase activity, whereas insulin stimulated the poly(ADP-ribosyl)glycohydrolase activity. This latter effect may be mediated by a decline in cAMP levels for the following reasons: the glycohydrolase is known to be inhibited by cAMp, insulin decreased cAMP concentrations in mammary explants by 70%, and cholera toxin blocked the effects of insulin on poly(ADP-ribose) degradation. This reciprocal relationship between poly(ADP-ribosyl)ation and mammary gland differentiation is further supported by pharmacological studies: in the presence of insulin, cortisol, and prolactin, an inhibitor of the synthetase stimulated alpha-lactalbumin three-fold over hormone stimulation alone. However, this inhibitor was unable to induce differentiation in the absence of prolactin. Therefore, although there is a close association between a decline in enzyme activity and mammary differentiation, the data are insufficient to support a causal relationship.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.