Abstract

A processing-microstructure-performance approach is followed to study three bearing steel samples manufactured from the most frequently used continuous casting routes. The inclusion microstructures of the samples were altered by varying the metallurgy and hot working conditions. Inclusion size distribution information is obtained, showing the steel-making route that results in the highest cleanliness. 3D analysis of inclusion morphologies using electrolytic extraction indicates the irregularities on the surface to be favourable sites for crack nucleation under RCF. Flat-washer and ball-on-rod tests were conducted to study the rolling contact fatigue life of the steels, with the results from the flat-washer testing method being more representative for bearing life. This research suggests that early fatigue of bearings is governed by silicate fragmentation and late fatigue by TiN inclusions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call