Abstract
The effect of stereoscopic depth on perceived lightness was studied using a simple, achromatic stimulus arrangement. In Experiment 1, depth/lightness interactions were sought between a single test field and a single induction field. In Experiment 2, depth/lightness interactions were looked for between a single test field and two induction fields. Stimuli were presented on a computer screen and viewed with a stereoscope. The subjects reported perceived lightness of the achromatic test field by rating its apparent blackness along a dimension of 0%-100%. In Experiment 1, they reported lightness judgments of the test field across 13 perceived depth levels and 8 contrast levels. In Experiment 2, they gave lightness judgments of the test field across 7 perceived depth levels and 16 contrast levels. We were particularly interested in observing the generality of Gilchrist's coplanar ratio hypothesis. The results showed that when stereopsis and contrast levels are the available cues, depth and lightness percepts are independent, and it is retinal ratios, not coplanar ratios, that dictate lightness perception. We conclude that before the relative depth location of an object is determined, its lightness value is known through sensory-level processes.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.