Abstract

AbstractThe analyses of plant leaf traits that strongly influence aboveground net primary production (ANPP) are indispensable for understanding the process of plant biomass formation. However, there are few studies that have attempted to relate patterns of ANPP under contrasting management practices to plant leaf‐level traits. To assess how leaf traits affect plant biomass accumulation under different land‐use practices, we examined leaf traits and biomass production in three differently managed sites in the Inner Mongolia steppe: a site fenced since 1979 (UG), a winter grazing site (WG), and a heavily grazed site (HG). Low soil water content, leaf area index, and potential growth ability of species at site HG led to low crop growth rate (CGR), net assimilation rate (NAR), and relative growth rate (RGR); resulting in lower ANPP as compared to sites WG and UG. Irrespective of land‐use management, prolonged drought significantly decreases ANPP even though it systematically increases mean CGR and RGR. However, leaf N content and leaf weight ratio are the crucial components necessary to determine the RGR at site WG. This suggests that low leaf N and availability of soil N due to haymaking may be responsible for neither over‐compensatory nor compensatory growth in this site. The low ANPP in dry years is not due to the low mean CGR and RGR but rather to the short effective growing days (referring to the days the vegetation actually grows), suggesting that production‐adjusted grazing regimes may be the most suitable measures for precision land management and avoiding grassland degradation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call