Abstract

Abstract The young and magnetically active K dwarf ε Eridani exhibits a chromospheric activity cycle of about 3 yr. Previous reconstructions of its large-scale magnetic field show strong variations at yearly epochs. To understand how ε Eridani’s large-scale magnetic field geometry evolves over its activity cycle, we focus on high-cadence observations spanning 5 months at its activity minimum. Over this time-span, we reconstruct three maps of ε Eridani’s large-scale magnetic field using the tomographic technique of Zeeman–Doppler imaging. The results show that at the minimum of its cycle, ε Eridani’s large-scale field is more complex than the simple dipolar structure of the Sun and 61 Cyg A at minimum. Additionally, we observe a surprisingly rapid regeneration of a strong axisymmetric toroidal field as ε Eridani emerges from its S-index activity minimum. Our results show that all stars do not exhibit the same field geometry as the Sun, and this will be an important constraint for the dynamo models of active solar-type stars.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.