Abstract

A thermodynamic model describing the relation between plant growth and respiration rates is derived from mass-and enthalpy-balance equations. The specific growth rate and the substrate carbon conversion efficiency are described as functions of the metabolic heat rate, the rate of CO2 production, the mean oxidation state of the substrate carbon produced by photosynthesis, and enthalpy changes for conversion of photosynthate to biomass and CO2. The relation of this new model to previous models based only on mass-balance equations is explored. Metabolic heat rate is shown to be a useful additional measure of respiration rates in plant tissues because it leads to a more explicit description of energy relations. Preliminary data on three Zea mays (L.) cultivars are reported. The model suggests new rationales for plant selection, breeding and genetic engineering that could lead to development of plants with more desirable growth rates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.