Abstract

Electron microscopy, fractography, and notched tear tests have been used to investigate the effects of heat treatment upon the fracture behavior of aged 7075 aluminum alloy sheet. Toughness, as measured by crack propagation energy, decreases as the yield stress increases; the toughness of an overaged structure is inferior to that of an underaged structure at the same yield stress. The decrease of toughness with increased aging time is accompanied by a change in fracture mode from predominantly transgranular to intergranular. Transgranular fracture proceeds by dimple rupture and is facilitated by chromium-rich particles which are dispersed throughout the microstructure. Intergranular fracture proceeds by the fracture of grain boundary precipitate particles. The variation of fracture mode with aging time is attributed to a steady decrease of the intergranular fracture stress relative to the transgranular fracture stress, due to increasing grain boundary particle size. A possible explanation of this effect is discussed using the stress concentration due to colinear crack arrays as an analogy. The effects of quenching variations and two-step aging are discussed. It is shown that, in aged 7075, microstructural variables such as the width of precipitate-free zones and the nature of the matrix precipitate do not have a controlling effect on toughness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.