Abstract

We perform a two‐dimensional simulation by using an electromagnetic hybrid code to study the formation of slow‐mode shocks in collisionless magnetic reconnection in low beta plasmas, and we focus on the relation between the formation of slow shocks and the ion temperature anisotropy enhanced at the shock downstream region. It is known that as magnetic reconnection develops, the parallel temperature along the magnetic field becomes large in association with the anisotropic plasma sheet boundary layer ion beams, and this temperature anisotropy has a tendency to suppress the formation of slow shocks. On the basis of our simulation result, we found that the slow shock formation is suppressed due to the large temperature anisotropy near the X‐type region, but the ion temperature anisotropy relaxes with increasing the distance from the magnetic neutral point. As a result, two pairs of current structures, which are the strong evidence of dissipation of magnetic field in slow shocks, are formed at the distance ∣x∣ ≥ 115 λi from the neutral point.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call