Abstract

In biotechnology, mathematical models often consider changes in cell numbers as well as in metabolite conversion to describe different cell growth phases. It has been frequently observed that the cell number is only a delayed indicator of cell growth compared to the biomass, which challenges the principle structure of corresponding models.Here, we evaluate adherent cell growth phases in terms of cell number and biomass increase on the basis of detailed experimental data of three independent cultivations for Madin Darby canine kidney cells. We develop a model linking cell numbers and mean cell diameters to estimate cell volume changes during growth without the need for diameter distribution measurements. It simultaneously describes the delay between cell number and cell volume increase, cell-specific volume changes and the transition from growth to maintenance metabolism while taking different pre-culture conditions, which affect the cell diameter, into account. In addition, inspection of metabolite uptake and release rates reveals that glucose is mainly used for generation of cellular energy and glutamine is not required for cellular maintenance. Finally, we conclude that changes in cell number, cell diameter and metabolite uptake during cultivation contribute to the understanding of the time course of intracellular metabolites during the cultivation process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.