Abstract

Proton conductivity phenomena in 10% Y-doped barium and strontium cerate are investigated experimentally and by quantum molecular dynamics simulations. In particular the impact of deviations from the cubic perovskite structure on the formation and mobility of protonic charge carriers is investigated. For Y: SrCeO3, which shows a larger deviation from the ideal cubic perovskite structure, the concentration and mobility of protonic defects is significantly lower than for Y: BaCeO3. The first is due to the decay of the oxygen position into two sites, only one of which is involved in the formation of protonic defects. The symmetry reduction also leads to the formation of different one-dimensional proton diffusion paths, and unfavourable jumps between such paths are supposed to control the macroscopic proton diffusion coefficient in Y: SrCeO3. The analysis suggests the formation of strong but transient hydrogen bonds and inter-octa-hedra proton transfer between vertices for SrCeO3 in contrast to just intra-octahedra proton transfer for BaCeO3. Whereas for BaCeO3 the proton transfer step is identified to be rate-limiting at T= 1000 K, for SrCeO3 both proton transfer and reorientation are found to be of similar magnitude.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.