Abstract

In this paper, we examine the creeping wave propagation wavenumbers, modal impedance, and field behavior on a dielectric coated circular cylinder. The physical interpretation is assisted by comparing the cylinder's pole waves with the leaky waves and surface waves that occur on a flat, grounded dielectric slab. The propagation wavenumbers and modal impedance are computed in the complex wavenumber plane. The cylinder propagation wavenumbers come from a transcendental equation involving Hankel functions, which are entire functions of complex order, whereas for the slab, branch-point singularities are present. This difference is examined, so that one can better understand how a coated cylinder behaves like a flat slab, when the cylinder radius is large. It is found that for the cylinder, the Stokes line for the asymptotic expansion of the Hankel function plays a role that is similar to the planar slab branch cut.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.