Abstract
The stringent response, controlled by (p)ppGpp, enables bacteria to trigger a strong phenotypic resetting that is crucial to cope with adverse environmental changes and is required for stress survival and virulence. In the bacterial cell, (p)ppGpp levels are regulated by the concerted opposing activities of RSH (RelA/SpoT homologue) enzymes that can transfer a pyrophosphate group of ATP to the 3' position of GDP (or GTP) or remove the 3' pyrophosphate moiety from (p)ppGpp. Bifunctional Rel enzymes are notoriously difficult to crystallize owing to poor stability and a propensity for aggregation, usually leading to a loss of biological activity after purification. Here, the production, biochemical analysis and crystallization of the bifunctional catalytic region of the Rel stringent factor from Thermus thermophilus (RelTtNTD) in the resting state and bound to nucleotides are described. RelTt and RelTtNTD are monomers in solution that are stabilized by the binding of Mn2+ and mellitic acid. RelTtNTD crystallizes in space group P4122, with unit-cell parameters a = b = 88.4, c = 182.7 Å, at 4°C and in space group P41212, with unit-cell parameters a = b = 105.7, c = 241.4 Å, at 20°C.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Acta Crystallographica Section F Structural Biology Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.