Abstract

Spine morphogenesis requires the integration of multiple musculoskeletal tissues with the nervous system. Cerebrospinal fluid (CSF) physiology is important for development and homeostasis of the central nervous system and its disruption has been linked to scoliosis in zebrafish. Suspended in the CSF is an enigmatic glycoprotein thread called the Reissner fiber, which is secreted from the subcomissural organ (SCO) in the brain and extends caudally through the central canal to where it terminates at the base of the spinal cord. In zebrafish, scospondin null mutants are unable to assemble the Reissner fiber and fail to extend a straight body axis during embryonic development. Here, we describe zebrafish hypomorphic missense alleles, which assemble the Reissner fiber and straighten the body axis during early embryonic development, yet progressively lose the fiber, concomitant with the emergence of body curvature, alterations in neuronal gene expression, and scoliosis in adults. Using an endogenously tagged scospondin-GFP zebrafish knock-in line, we directly visualized Reissner fiber dynamics during the normal development and during the progression of scoliosis, and demonstrate that the Reissner fiber is critical for the morphogenesis of the spine. Our study establishes a framework for future investigations of mechanistic roles of the Reissner fiber including its dynamic properties, molecular interactions, and how these processes are involved in the regulation of spine morphogenesis and scoliosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call