Abstract

Background Colorectal cancer is highly prevalent and causes high global mortality, and glucagon axis has been implicated in colon cancer. The present study is aimed at investigating the regulating mechanisms of glucagon involvement in colorectal cancer. Methods Publicly available data from the TCGA database was utilized to explore the expression pattern and regulating role of glucagon (GCG) in colorectal cancer (COADREAD) including colon adenocarcinomas (COAD) and rectum adenocarcinomas (READ). Statistical analyses were performed using the R software packages and public web servers. The expression pattern and prognostic significance of GCG gene in pan-cancer and TCGA-COADREAD data were investigated by performing unpaired and paired sample analyses. The association of GCG expression with clinical characteristics was investigated using logistic regression analysis. Univariate cox regression analysis was performed to test the prognostic value of GCG expression for overall survival in COADREAD patients. GCG-significantly correlated genes were obtained. Biological functions and signaling pathways were identified by performing functional enrichment analysis and Gene Set Enrichment Analysis (GSEA). Additionally, the potential involvement of GCG in tumor immunity was researched by investigating the correlation between GCG expression and 24 tumor infiltrating immune cells. Results GCG was found to be significantly downregulated in COADREAD tumor samples compared with healthy control samples. GCG gene was shown to be associated with the prognostic outcomes of COADREAD, whereby its upregulation predicted improved survival outcomes. Functional enrichment analysis showed that the top 100 positively and top 100 negatively GCG-correlated genes were mainly enriched in three signaling pathways including ribosome, nitrogen metabolism, and proximal tubule bicarbonate reclamation. The GSEA showed that GCG-significantly correlated genes were mainly enriched in cell cycle-related pathways (reactome cell cycle, reactome cell cycle mitotic, reactome cell cycle checkpoints, reactome M phase, Reactome G2 M DNA damage checkpoint, and Reactome G2 M checkpoints), neuropeptide ligand receptor interaction, RHO GTPases signaling, WNT signaling, RUNX1 signaling, NOTCH signaling, ESR signaling, HCMV infection, and oxidative stress-related signaling. GCG was positively correlated with Th17 cells, pDC, macrophages, TFH cells, iDC, Tem, B cells, dendritic cells, neutrophils, mast cells, and eosinophils and was negatively associated with NK cells. Conclusions GCG dysregulation with high prognostic value in COADREAD was noted. Several tumor progression-related pathways and tumor immune-modulatory cells were linked to GCG expression in COADREAD. Therefore, GCG may be regarded as a potential therapeutic target for treating colorectal cancer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.