Abstract

Autophosphorylation of the insulin receptor has been previously documented to activate the phosphotransferase activity of the receptor from 20- to 200-fold. Biochemical studies have correlated activation of the receptor kinase with the autophosphorylation of tyrosines residues 1158, 1162, and 1163. To further assess the role of these 3 tyrosines in the activation process, we have studied the effect of their substitution with either the neutral amino acids phenylalanine or alanine or with the negatively charged amino acids aspartate and glutamate. In several other proteins, it has been shown that substitution of phosphorylated residues with negatively charged amino acids can mimic the phosphorylation state of the protein. In agreement with previous studies, tyrosines at positions 1162 and 1163 were found to be crucial in the kinase activation process. In contrast, mutant receptors with tyrosine 1158 changed to either phenylalanine or aspartate were still activated to the same extent as the wild-type receptor. An increased basal exogenous kinase activity was observed upon replacement of tyrosines 1162 and 1163 with, in increasing order of potency, aspartate = glutamate less than alanine = phenylalanine. These results indicate that phosphorylation of tyrosines 1162/1163 but not 1158 play a critical role in the activation of the receptor kinase and that the mechanism of activation of the receptor kinase by autophosphorylation is more complex than just an introduction of a cluster of negative charges in this region of the receptor. In addition, the finding of an increased basal kinase activity in receptors lacking tyrosines 1162 and 1163 could explain the reported ability of this receptor to mediate certain biological responses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.